Skip to main content

Chapter 18 LA4: Square Matrices

Recall that a square matrix is a matrix with the same number of rows as columns. We call an \(n\times n \) matrix a square matrix of order \(n \text{.}\) When we add or multiply two square matrices of order \(n \) we always obtain a square matrix of order \(n \text{.}\) The zero matrix, \(0 \text{,}\) of order \(n \) is the matrix with all entries \(0 \text{,}\) i.e.
\begin{equation*} 0 = \begin{pmatrix} 0 \amp 0 \amp \cdots \amp 0 \\ 0 \amp 0 \amp \cdots \amp 0 \\ \vdots \amp \vdots \amp \ddots \amp \vdots \\ 0 \amp 0 \amp \cdots \amp 0 \end{pmatrix} \end{equation*}
and has the properties
  1. \(\displaystyle 0A=A0=0 \)
  2. \(\displaystyle A+0=A \)
  3. \(\displaystyle A-A=0 \)
where \(A \) is any square matrix of order \(n \text{.}\) The identity matrix, \(I, \) of order \(n \) is the \(n\times n \) matrix with \(1\text{'s} \) on the main diagonal and all other entries \(0 \text{.,}\) i.e.
\begin{equation*} I = \begin{pmatrix} 1 \amp 0 \amp \cdots \amp 0 \\ 0 \amp 1 \amp \cdots \amp 0 \\ \vdots \amp \vdots \amp \ddots \amp \vdots \\ 0 \amp 0 \amp \cdots \amp 1 \end{pmatrix} \end{equation*}
The identity matrix has the property that for any square matrix of order \(n, \) \(A, \)
  • \(\displaystyle IA=AI=A \)
\(I \) is the only matrix that satisfies this property.

Section 18.1 Inverse Matrices

Definition 18.1. Inverse Matrix.

Given the square matrix \(A \text{,}\) if there exists a square matrix \(B \) such that
\begin{equation*} AB=BA=I \end{equation*}
then we call the matrix \(B \) the inverse of \(A \) and write \(B=A^{-1} \text{.}\)
Note:
  1. If matrix \(B \) is the inverse of matrix \(A \) then matrix \(A \) is the inverse of matrix \(B, \text{,}\) i.e.
    \begin{equation*} (A^{-1})^{-1}=A. \end{equation*}
  2. If matrix \(A \) has an inverse then we say that \(A \) is invertible or non-singular.
  3. The inverse of a matrix (if it exists) is unique.
  4. For matrix \(A \text{,}\) if there exists a matrix \(B \) such that \(AB=I \) then it follows that \(BA=I \) as well.

Example 18.2.

Let \(A=\begin{pmatrix} 1 \amp 1 \\ 1 \amp 2 \end{pmatrix} \quad \mbox{and} \quad B=\begin{pmatrix} 2 \amp -1 \\ -1 \amp 1 \end{pmatrix}.\) Calculate \(AB\; \text{and}\; BA. \)
Answer.
\(AB=BA=I. \)
Solution.
  1. \(\displaystyle AB=\begin{pmatrix} 1 \amp 1 \\ 1 \amp 2 \end{pmatrix} \begin{pmatrix} 2 \amp -1 \\ -1 \amp 1 \end{pmatrix} =\begin{pmatrix} 1 \amp 0 \\ 0 \amp 1 \end{pmatrix}=I \)
  2. \(\displaystyle BA=\begin{pmatrix} 2 \amp -1 \\ -1 \amp 1 \end{pmatrix} \begin{pmatrix} 1 \amp 1 \\ 1 \amp 2 \end{pmatrix} = \begin{pmatrix} 1 \amp 0 \\ 0 \amp 1 \end{pmatrix}=I \)
\(A^{-1}=B\; \text{and}\; B^{-1}=A. \)

Example 18.3.

Show that \(A=\begin{pmatrix} 1 \amp -1 \\ 1 \amp -1 \end{pmatrix} \) is not invertible.
Solution.
\(A^{-1} \)\(A^{2}=0, \)
\begin{equation*} A=IA=(A^{-1}A)A=A^{-1}A^{2}=A^{-1}0=0, \end{equation*}
\(A^{-1} \)
Given a square matrix \(A \) to find its inverse we need to find a matrix \(A^{-1} \) such that \(AA^{-1}=I \text{.}\) Let’s begin by considering the \(2\times 2 \) case. Let
\begin{equation*} A=\begin{pmatrix} 1 \amp -1 \\ 1 \amp -1 \end{pmatrix}, \end{equation*}
where \(a\text{,}\) \(b\text{,}\) \(c\) and \(d\) are given. We want to find the entries in
\begin{equation*} A^{-1}=\begin{pmatrix} x_{1} \amp y_{1} \\ x_{2} \amp y_{2} \end{pmatrix}. \end{equation*}
Since \(AA^{-1}=I \) we have that
\begin{equation*} \begin{pmatrix} a \amp b \\ c \amp d \end{pmatrix} \begin{pmatrix} x_{1} \amp y_{1} \\ x_{2} \amp y_{2} \end{pmatrix}=\begin{pmatrix} 1 \amp 0 \\ 0 \amp 1 \end{pmatrix}, \end{equation*}
or equivalently,
\begin{equation*} \begin{cases} ax_{1} + bx_{2} = 1\\ cx_{1} + dx_{2} = 0 \end{cases} \;\;\; \text{ and } \;\;\; \begin{cases} ay_{1} + by_{2} = 0\\ cy_{1} + dy_{2} = 1 \end{cases} \end{equation*}
Both systems of equations have the same coefficient matrix, i.e.
\begin{equation*} \begin{pmatrix} a \amp b \\ c \amp d \end{pmatrix}. \end{equation*}
The augmented matrices for these systems are
\begin{equation*} \begin{pmatrix} a \amp b \amp 1 \\ c \amp d \amp 0 \end{pmatrix} \;\;\; \text{ and } \;\;\; \begin{pmatrix} a \amp b \amp 0 \\ c \amp d \amp 1 \end{pmatrix} \end{equation*}
and since these have the same coefficient matrix we can combine the augmented matrices to get
\begin{equation*} \left(\begin{array}{c c | c c} a \amp b \amp 1 \amp 0 \\c \amp d \amp 0 \amp 1 \end{array}\right) \end{equation*}
By reducing this matrix to reduced row echelon form we can solve both sets of equations at the same time. If \(A \) has an inverse then the reduced row-echelon form will be
\begin{equation*} \left(\begin{array}{c c | c c} 1 \amp 0 \amp \alpha \amp \beta \\ 0 \amp 1 \amp \chi \amp \delta \end{array}\right) \end{equation*}
and hence \(x_{1}=\alpha,\; x_{2}=\chi,\; y_{2}=\beta \) and \(\; y_{2}=\delta \text{.}\) Thus, the augmented section of this matrix will contain \(A^{-1} \text{.}\)

Example 18.4.

Find the inverse of matrix \(A=\begin{pmatrix} 1 \amp 1 \\ 1 \amp 2 \end{pmatrix}. \)
Answer.
\(A^{-1}=\begin{pmatrix} 2 \amp -1 \\ -1 \amp 1 \end{pmatrix}. \)
Solution.
\(A \)\(I, \)
\begin{equation*} \left(\begin{array}{c c | c c} 1 \amp 1 \amp 1 \amp 0 \\1 \amp 2 \amp 0 \amp 1 \end{array}\right) \end{equation*}
\begin{align*} \left(\begin{array}{c c | c c} 1 \amp 1 \amp 1 \amp 0 \\1 \amp 2 \amp 0 \amp 1 \end{array}\right) \amp \sim\left(\begin{array}{c c | c c} 1 \amp 1 \amp 1 \amp 0 \\0 \amp 1 \amp -1 \amp 1 \end{array}\right) \hspace{8mm} R'_{2}= R_{2}-R_{1} \\ \amp \sim \left(\begin{array}{c c | c c} 1 \amp 0 \amp 2 \amp -1 \\0 \amp 1 \amp -1 \amp 1 \end{array}\right) \hspace{4mm} R'_{1}= R_{1}-R_{2} \end{align*}
\begin{equation*} A^{-1}=\begin{pmatrix} 2 \amp -1 \\ -1 \amp 1 \end{pmatrix}. \end{equation*}

Example 18.5.

Find the inverse of matrix \(A=\begin{pmatrix} 1 \amp -1 \\ 1 \amp -1 \end{pmatrix}. \)
Answer.
\(A \)
Solution.
Example 18.4\(A \)\(I \text{,}\)
\begin{equation*} \left(\begin{array}{c c | c c} 1 \amp -1 \amp 1 \amp 0 \\1 \amp -1 \amp 0 \amp 1 \end{array}\right) \end{equation*}
\begin{equation*} \left(\begin{array}{c c | c c} 1 \amp -1 \amp 1 \amp 0 \\1 \amp -1 \amp 0 \amp 1 \end{array}\right)\sim \left(\begin{array}{c c | c c} 1 \amp -1 \amp 1 \amp 0 \\0 \amp 0 \amp -1 \amp 1 \end{array}\right) \hspace{5mm} R'_{2}= R_{2}-R_{1} \end{equation*}
\(0 \)\(A \text{.}\)\(A \)
The reasoning applied above to find a procedure for finding the inverse of a \(2\times 2 \) matrix applies equally well to any sized square matrix. Thus we have a general procedure for finding the inverse of a square matrix.

Example 18.7.

Find the inverse, if it exists, of \(A=\begin{pmatrix} 2 \amp 1 \amp 6 \\ -4 \amp 5 \amp -3 \\ 2 \amp -1 \amp 3 \end{pmatrix}. \)
Answer.
\(A^{-1}=\begin{pmatrix} -2 \amp \frac{3}{2} \amp \frac{11}{2} \\ -1 \amp 1 \amp 3 \\ 1 \amp -\frac{2}{3} \amp -\frac{7}{3} \end{pmatrix}. \)
Solution.
\begin{align*} \amp \left(\begin{array}{c c c | c c c} 2 \amp -1 \amp 6 \amp 1 \amp 0 \amp 0 \\-4 \amp 5 \amp -3 \amp 0 \amp 1 \amp 0 \\2 \amp -1 \amp 3 \amp 0 \amp 0 \amp 1 \end{array}\right)\\ \amp \sim \left(\begin{array}{c c c | c c c} 1 \amp \frac{1}{2} \amp 3 \amp \frac{1}{2} \amp 0 \amp 0 \\0 \amp 7 \amp 9 \amp 2 \amp 1 \amp 0 \\0 \amp -2 \amp -3 \amp -1 \amp 0 \amp 1 \end{array}\right) \begin{matrix} R'_{1} = \amp \frac{R_{1}}{2}\;\;\;\qquad\\ R'_{2} = \amp R_{2}+4R'_{1}\\ R'_{3} = \amp R_{3}-R_{1} \end{matrix} \\ \amp \sim \left(\begin{array}{c c c | c c c} 1 \amp 0 \amp \frac{33}{14} \amp \frac{5}{14} \amp -\frac{1}{14} \amp 0 \\0 \amp 1 \amp \frac{9}{7} \amp \frac{2}{7} \amp \frac{1}{7} \amp 0 \\0 \amp 0 \amp -\frac{3}{7} \amp -\frac{3}{7} \amp 0 \amp 1 \end{array}\right) \begin{matrix} R'_{1} = \amp R_{1}-\frac{R'_{2}}{2} \\ R'_{2} = \amp \frac{R_{2}}{7}\;\;\;\qquad\\ R'_{3} = \amp R_{3}+2R'_{2} \end{matrix} \\ \amp \sim \left(\begin{array}{c c c | c c c} 1 \amp 0 \amp 0 \amp -2 \amp \frac{3}{2} \amp \frac{11}{2} \\0 \amp 1 \amp 0 \amp -1 \amp 1 \amp 3 \\0 \amp 0 \amp 1 \amp 1 \amp -\frac{2}{3} \amp -\frac{7}{3} \end{array}\right) \begin{matrix} R'_{1} = \amp R_{1}-\frac{33R'_{3}}{14} \\ R'_{2} = \amp R_{2}-\frac{9R'_{3}}{7} \\ R'_{3} = \amp -\frac{7R'_{3}}{3} \;\;\; \qquad \end{matrix} \end{align*}
\begin{equation*} A^{-1}=\begin{pmatrix} -2 \amp \frac{3}{2} \amp \frac{11}{2} \\ -1 \amp 1 \amp 3 \\ 1 \amp -\frac{2}{3} \amp -\frac{7}{3} \end{pmatrix}. \end{equation*}
\(AA^{-1}=I \text{.}\)

Example 18.8.

Find the inverse, if it exists, of \(A=\begin{pmatrix} 2 \amp 1 \amp 6 \\ -4 \amp 5 \amp -3 \\ 2 \amp 8 \amp 15 \end{pmatrix}. \)
Answer.
\(A \)
Solution.
\begin{align*} \amp \left(\begin{array}{c c c | c c c} 2 \amp 1 \amp 6 \amp 1 \amp 0 \amp 0 \\-4 \amp 5 \amp -3 \amp 0 \amp 1 \amp 0 \\2 \amp 8 \amp 15 \amp 0 \amp 0 \amp 1\end{array}\right)\\ \amp \sim\left(\begin{array}{c c c | c c c} 1 \amp \frac{1}{2} \amp 3 \amp \frac{1}{2} \amp 0 \amp 0 \\0 \amp 7 \amp 9 \amp 2 \amp 1 \amp 0 \\0 \amp 7 \amp 9 \amp -1 \amp 0 \amp 1\end{array}\right) \begin{matrix} R'_{1} = \amp \frac{R_{1}}{2}\;\;\;\qquad\\ R'_{2} = \amp R_{2}+4R'_{1}\\ R'_{3} = \amp R_{3}-R_{1} \end{matrix} \\ \amp \sim\left(\begin{array}{c c c | c c c} 1 \amp 0 \amp \frac{33}{14} \amp \frac{5}{14} \amp -\frac{1}{14} \amp 0 \\0 \amp 1 \amp \frac{9}{7} \amp \frac{2}{7} \amp \frac{1}{7} \amp 0 \\0 \amp 0 \amp 0 \amp -3 \amp -1 \amp 1\end{array}\right) \begin{matrix} R'_{1} = \amp R_{1}-\frac{R'_{2}}{2} \\ R'_{2} = \amp \frac{R_{2}}{7}\;\;\;\qquad\\ R'_{3} = \amp R_{3}-R'_{2} \end{matrix} \end{align*}
\(A \)
For later reference, some properties of the inverse of a matrix are listed below.

Example 18.10.

Confirm that \((AB)^{-1}=B^{-1}A^{-1} \) holds for the matrices.
\begin{equation*} A=\begin{pmatrix} 3 \amp 1 \\ -1 \amp 2 \end{pmatrix} \;\;\; \text{and}\;\;\; B=\begin{pmatrix} 1 \amp 5 \\ 0 \amp -2 \end{pmatrix} \end{equation*}
Solution.
\begin{equation*} AB=\begin{pmatrix} 3 \amp 1 \\ -1 \amp 2 \end{pmatrix} \begin{pmatrix} 1 \amp 5 \\ 0 \amp -2 \end{pmatrix} = \begin{pmatrix} 3 \amp 13 \\ -1 \amp -9 \end{pmatrix}, \end{equation*}
\begin{equation*} (AB)^{-1}=\begin{pmatrix} 3 \amp 13 \\ -1 \amp 9 \end{pmatrix}^{-1} = \frac{1}{14}\begin{pmatrix} -9 \amp -13 \\ 1 \amp 3 \end{pmatrix}. \end{equation*}
\begin{equation*} A^{-1}=\begin{pmatrix} 3 \amp 1 \\ -1 \amp 2 \end{pmatrix}^{-1} = \frac{1}{7}\begin{pmatrix} 2 \amp -1 \\ 1 \amp 3 \end{pmatrix}, \end{equation*}
\begin{equation*} B^{-1}=\begin{pmatrix} 1 \amp 5 \\ 0 \amp -2 \end{pmatrix}^{-1} = -\frac{1}{2}\begin{pmatrix} -2 \amp -5 \\ 0 \amp 1 \end{pmatrix}, \end{equation*}
\begin{equation*} B^{-1}A^{-1}= -\frac{1}{2}\begin{pmatrix} -2 \amp -5 \\ 0 \amp 1 \end{pmatrix} \frac{1}{7}\begin{pmatrix} 2 \amp -1 \\ 1 \amp 3 \end{pmatrix} = - \frac{1}{14}\begin{pmatrix} -9 \amp -13 \\ 1 \amp 3 \end{pmatrix}. \end{equation*}
The idea of a matrix inverse can be related to the problem of solving systems of linear equations in the case where the number of equations in the system is the same as the number of variables. As we have seen previously, we can write the system of \(n \) linear equations in \(n \) unknowns
\begin{align*} a_{11} x_{1}+a_{12}x_{2} + \dots +a_{1n} x_{n}= \amp b_{1}\\ a_{21} x_{1}+a_{22}x_{2} + \dots +a_{2n} x_{n}= \amp b_{2}\\ \vdots \amp\\ a_{n1} x_{1}+a_{n2}x_{2} + \dots +a_{nn} x_{n}= \amp b_{n} \end{align*}
\begin{equation} A \mathbf{x} = \mathbf{b}\tag{18.1} \end{equation}
\(A \)\(n\times n \)\(\mathbf{x} \)\(n\times 1 \)\(\mathbf{b} \)\(A \)(18.1)
\begin{align*} A^{-1}(A \mathbf{x})= \amp A^{-1} \mathbf{b},\\ (A^{-1}A) \mathbf{x}= \amp A^{-1} \mathbf{b},\\ \mathbf{x}= \amp A^{-1}\mathbf{b}. \end{align*}

Example 18.11.

Solve the system of equations
\begin{align*} 2x + y + 6z = \amp 9,\\ -4x + 5y - 3z = \amp -7,\\ 2x - y + 3z = \amp 5. \end{align*}
Answer.
\(x=-1, \; y=-1,\; \text{and} \; z=2. \)
Solution.
\begin{equation*} \begin{pmatrix} 2 \amp 1 \amp 6 \\ -4 \amp 5 \amp -3 \\ 2 \amp -1 \amp 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}= \begin{pmatrix} 9 \\ -7 \\ 5 \end{pmatrix} \end{equation*}
Example 18.7
\begin{equation*} \begin{pmatrix} x \\ y \\ z \end{pmatrix}= \begin{pmatrix} -2 \amp \frac{3}{2} \amp \frac{11}{2} \\ -1 \amp 1 \amp 3 \\ 1 \amp -\frac{2}{3} \amp -\frac{7}{3} \end{pmatrix} \begin{pmatrix} 9 \\ -7 \\ 5 \end{pmatrix}= \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \end{equation*}
\(x=-1, \; y=-1,\; \text{and} \; z=2. \)
\(n \)\(n \)

Exercises Example Tasks

1.
Find the inverse, if it exists, of
\begin{align*} A = \amp \begin{pmatrix} 2 \amp 1 \amp 3 \\ -1 \amp 2 \amp 4 \\ 8 \amp -1 \amp 1 \end{pmatrix}\\ B = \amp \begin{pmatrix} 1 \amp 1 \amp 2 \\ -1 \amp 2 \amp -1 \\ 1 \amp -1 \amp 1 \end{pmatrix} \end{align*}
2.
Find the matrix for a rotation in the plane about the origin through \(\frac{\pi}{4}^{c} \) . Find the inverse of this matrix and interpret it geometrically.

Section 18.2 Determinants

If we attempted to find the inverse of the general \(2\times 2 \) matrix
\begin{equation*} A= \begin{pmatrix} a \amp b \\ c \amp d \end{pmatrix} \end{equation*}
we would find that, if \(ad-bc\neq 0 \) the inverse is
\begin{equation*} A^{-1}=\frac{1}{ad-bc} \begin{pmatrix} d \amp -b \\ -c \amp a \end{pmatrix}, \end{equation*}
and if \(ad-bc=0 \) then \(A \) does not have an inverse. Thus for a \(2\times 2\) matrix, \(A \text{,}\) calculating the quantity \(ad-bc \) can act as a test for the invertibility of \(A \text{.}\) This quantity is called the determinant of \(A \) and is denoted by
\begin{equation*} \det(A) \;\text{or}\; \vert A\vert. \end{equation*}

Example 18.13.

Find the determinant of
\begin{equation*} A=\begin{pmatrix} 2 \amp -1 \\ 3 \amp 1 \end{pmatrix}. \end{equation*}
Answer.
\(\det(A)=5\)
Solution.
\begin{equation*} \begin{vmatrix} 2 \amp -1 \\ 3 \amp 1 \end{vmatrix}=2\times 1 -(3\times (-1))=5. \end{equation*}
Note that since the determinant is not zero this matrix is invertible.
We can also think about the determinant of a \(2\times 2\) matrix geometrically. We know (see Theorem 18.12) that a matrix has an inverse when its column vectors are linearly independent. Thus, the \(2\times 2\) matrix
\begin{equation*} A= \begin{pmatrix} a \amp b \\ c \amp d \end{pmatrix} \end{equation*}
will have an inverse when the vectors \((a,c)^{T} \) and \((b,d)^{T} \) are linearly independent. Now we also know (from Chapter 16) that two vectors in the plane are linearly independent if they define a parallelogram with non-zero area. Finally, from Math1110, we know that the area of the parallelogram defined by the vectors \(\mathbf{u} = (u_{1},u_{2})^{T} \) and \(\mathbf{v} = (v_{1},v_{2})^{T} \) is
\begin{equation*} Area=\vert u_{1}v_{2} - u_{2}v_{1}\vert. \end{equation*}
Thus matrix \(A \) will have an inverse when \(ad-bc\neq 0 \) , i.e. \(\det(A)\neq 0. \)
Let’s now apply the same geometric argument to the general \(3 \times 3\) matrix
\begin{equation*} A=\begin{pmatrix} u_{1} \amp v_{1} \amp w_{1} \\ u_{2} \amp v_{2} \amp w_{2} \\ u_{3} \amp v_{3} \amp w_{3} \end{pmatrix}=(\mathbf{u}, \mathbf{v}, \mathbf{w}). \end{equation*}
Three vectors in space are linearly independent if they define a parallelepiped with non-zero volume. Now, the volume of the parallelepiped formed by the vectors
\begin{equation*} \mathbf{u} = (u_{1},u_{2},u_{3})^{T} ,\; \mathbf{v} = (v_{1},v_{2},v_{3})^{T}, \; \text{and} \; \mathbf{w} =(w_{1},w_{2},w_{3})^{T} \end{equation*}
is
\begin{equation*} Volume=\vert \mathbf{u} \cdot \mathbf{v} \times \mathbf{w} \vert, \end{equation*}
i.e. the absolute values of the scalar triple product of the vectors, (again see Math1110). Thus the matrix \(A \) will have an inverse when \(\mathbf{u} \cdot \mathbf{v} \times \mathbf{w} \neq 0. \) Hence for a \(3\times 3 \) matrix its determinant is defined as
\begin{equation} \det(A)=\vert \mathbf{u} \cdot \mathbf{v} \times \mathbf{w} \vert\tag{18.2} \end{equation}

Example 18.14.

Find the determinant of
\begin{equation*} A= \begin{pmatrix} 2 \amp 4 \amp 6 \\ 3 \amp 2 \amp 1 \\ 1 \amp 1 \amp 2 \end{pmatrix}. \end{equation*}
Answer.
\(\det(A)=-8\)
Solution.
\(\mathbf{u}=(2,3,1)^{T},\; \mathbf{v}=(4,2,1)^{T},\; \mathbf{w}=(6,1,2)^{T}. \)
\begin{equation*} \mathbf{v} \times \mathbf{w}=(4,3,1) ^{T} \times (6,1,2)^{T}=(3,-2,-8)^{T} \end{equation*}
\begin{equation*} \det(A) = (2,3,1) ^{T} \cdot (3,-2,-8)^{T}=(3,-2,-8)^{T}=-8. \end{equation*}
While we can calculate the determinant of a \(3\times 3\) matrix using formula (18.2) other algorithms have been derived and have the advantage that they easily generalise to matrices of orders higher than \(3 \text{.}\)

Example 18.16. (Example 18.14 revisited).

Find the determinant of
\begin{equation*} A=\begin{pmatrix} 2 \amp 4 \amp 6 \\ 3 \amp 2 \amp 1 \\ 1 \amp 1 \amp 2 \end{pmatrix}. \end{equation*}
Answer.
\(\det ( A ) = -8\)
Solution.
\(i=1: \)
\begin{align*} \det(A) = \amp (-1)^{1+1} 2 \begin{vmatrix} 2 \amp 1 \\ 1 \amp 2 \end{vmatrix} + (-1)^{1+2} 4 \begin{vmatrix} 3 \amp 1 \\ 1 \amp 2 \end{vmatrix}+ (-1)^{1+3} 6 \begin{vmatrix} 3 \amp 2 \\ 1 \amp 1 \end{vmatrix}\\\\ =\amp 2(4-1)-4(6-1)+6(3-2)\\ \\ =\amp -8. \end{align*}

Example 18.17.

Find the determinant of
\begin{equation*} A=\begin{pmatrix} 2 \amp 4 \amp 6 \\ 0 \amp 2 \amp 1 \\ 0 \amp 0 \amp -4 \end{pmatrix}. \end{equation*}
Answer.
\(\det ( A ) = -24\)
Solution.
Using the second of the formulas given above with \(j=1: \)
\begin{align*} \det(A) = \amp (-1)^{1+1} 2 \begin{vmatrix} 3 \amp 1 \\ 0 \amp -4 \end{vmatrix} + (-1)^{2+1} 0 \begin{vmatrix} 2 \amp 6 \\ 0 \amp -4 \end{vmatrix}+ (-1)^{3+1} 0 \begin{vmatrix} 4 \amp 6 \\ 3 \amp 1 \end{vmatrix}\\\\ =\amp 2(-12-0)-0+0\\ \\ =\amp -24. \end{align*}
Notice that for a matrix that is upper triangular the determinant is just the product of the entries on the main diagonal.
Calculating the determinant of a \(3 \times 3 \) matrix via minors is relatively easy. However for matrices of higher orders the calculation can become very tedious. For example, to calculate the determinant of a \(4\times 4 \) matrix potentially involves calculating the determinants of four \(3\times 3\) matrices. Thus for large matrices the preferred strategy for calculating its determinant is based on the observation that for an upper triangular matrix the determinant is just the product of the entries on the main diagonal.

Example 18.19. (Example 18.14 revisited).

Find the determinant of
\begin{equation*} A=\begin{pmatrix} 2 \amp 4 \amp 6 \\ 3 \amp 2 \amp 1 \\ 1 \amp 1 \amp 2 \end{pmatrix}. \end{equation*}
Answer.
\(\det ( A ) = -8\)
Solution.
\(A \)
\begin{align*} \begin{pmatrix} 2 \amp 4 \amp 6 \\ 3 \amp 2 \amp 1 \\ 1 \amp 1 \amp 2 \end{pmatrix} \amp \sim \begin{pmatrix} 2 \amp 4 \amp 6 \\ 0 \amp -4 \amp -8 \\ 0 \amp -1 \amp -1 \end{pmatrix} \;\;\; \begin{matrix} \amp \\ R'_{2} \amp = R_{2}-3\frac{R_{1}}{2} \\ R'_{3} \amp = R_{3}-\frac{R_{1}}{2} \end{matrix}\\ \amp \sim \begin{pmatrix} 2 \amp 4 \amp 6 \\ 0 \amp -4 \amp -8 \\ 0 \amp 0 \amp 1 \end{pmatrix} \;\;\; \begin{matrix} \amp \\ \amp \\ R'_{3} \amp = R_{3}-\frac{R_{2}}{4} \end{matrix} \end{align*}
\(A \text{.}\)
\begin{equation*} \det(A)=2\times (-4)\times 1 = -8. \end{equation*}

Example 18.21.

Calculate the determinant of the following matrices. Which property of determinants does this illustrate?
\begin{equation*} A=\begin{pmatrix} -1 \amp 2 \\ 3 \amp -4 \end{pmatrix},\; B=\begin{pmatrix} -2 \amp 4 \\ 6 \amp -8 \end{pmatrix} \end{equation*}
Solution.
\begin{equation*} \det(A)=(-1)\times (-4)-3\times 2=4-6=-2. \end{equation*}
\begin{equation*} \det(B)=(-2)\times (-8)-4\times 6=16-24=-8. \end{equation*}
\(A \)\(B \)\(2 \)\(B=2A \)\(\det(B)=4\det(A) \)\(4.\)Theorem 18.20

Exercises Example Tasks

1.
Find the determinant of
\begin{equation*} M=\begin{pmatrix} 1 \amp 1 \amp 2 \\ 1 \amp -1 \amp 1 \\ 0 \amp 2 \amp 4 \end{pmatrix} \end{equation*}
  1. Using the minor formula.
  2. Using row reduction to an upper triangular matrix.