We compute the derivatives of \(f(x)=\sin(x)\text{:}\)
\begin{align*}
f(x) \amp = \sin(x) \amp f'(x) \amp = \cos(x) \\
f''(x) \amp = -\sin(x) \amp f'''(x) \amp = -\cos(x)
\end{align*}
thereafter, the pattern repeats, so \(f^{(4)}(x) = \sin(x)\) again, etc.
Plugging in \(x=0\text{,}\) we get
\begin{align*}
f(0) \amp = 0 \amp f'(0) \amp = 1 \\
f''(0) \amp = 0 \amp f'''(0) \amp = -1, \quad\text{etc.}
\end{align*}
Now we put it all together:
\begin{align*}
f(x) \amp = f(0) + f'(0)x + \frac{f''(0)'x^2}{2!} + \cdots \\
\amp = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \\
\amp = \sum_{k=0}^{\infty} (-1)^k\frac{x^{2k+1}}{(2k+1)!}.
\end{align*}
To get the last expression, note that the non-zero terms correspond to odd powers of \(x\text{,}\) and odd numbers are of the form \(2k+1\text{.}\) The \((-1)^k\) then ensures the alternating signs.