Example 8.1.
Use the chain rule to find \(\dfrac{df}{dx}\) if \(f(u) = \sin(u)\) and \(u(x)=x^2+1\text{.}\)
Answer.
\(\dfrac{df}{dx} = 2x\cos(x^2+1)\)
Solution.
Via the chain rule:
\begin{alignat*}{1}
\dfrac{df}{dx} \amp = \dfrac{df}{du}\dfrac{du}{dx}\\
\quad \amp = \cos(u)(2x)\\
\quad \amp = 2x\cos(x^2+1).
\end{alignat*}